Installation


You can install MetNormalizer from Github.

# Install `MetNormalizer` from GitHub
if(!require(devtools)){
install.packages("devtools")
}
devtools::install_github("jaspershen/MetNormalizer")

We use the demo data in demoData package to show how to use MetNormalizer. Please install it first.

devtools::install_github("jaspershen/demoData")

Usage


Demo data

library(demoData)
library(MetNormalizer)
path <- system.file("MetNormalizer", package = "demoData")
file.copy(from = path, to = ".", overwrite = TRUE, recursive = TRUE)
#> [1] TRUE
new.path <- file.path("./MetNormalizer")

Run MetNormalizer

metNor(
  ms1.data.name = "data.csv",
  sample.info.name = "sample.info.csv",
  minfrac.qc = 0,
  minfrac.sample = 0,
  optimization = TRUE,
  multiple = 5,
  threads = 4,
  path = new.path
)
#> Checking data...
#> Read data.
#> --------------------------------------------------------------
#> There are 177 samples in your data.
#> --------------------------------------------------------------
#> --------------------------------------------------------------
#> Summary:
#>             Check result OK Warning Error
#> data        Valid        7  0       0    
#> sample.info Valid        8  0       0    
#> 
#> 
#> data:
#> data is valid.
#> 
#> sample.info:
#> sample.info is valid.
#> Reading data...
#> Filtering data...
#> OK
#> SVR normalization...
#> 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==================                                                    |  25%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |====================================================                  |  75%
  |                                                                            
  |======================================================================| 100%
#> SVR normalization is done
#> All done!

All the results will be placed in the folder named as svr_normalization_result.