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ABSTRACT: The metabolic profiling of biofluids using
untargeted metabolomics provides a promising choice to
discover metabolite biomarkers for clinical cancer diagnosis.
However, metabolite biomarkers discovered in biofluids may not
necessarily reflect the pathological status of tumor tissue, which
makes these biomarkers difficult to reproduce. In this study, we
developed a new analysis strategy by integrating the univariate
and multivariate correlation analysis approach to discover tumor
tissue derived (TTD) metabolites in plasma samples. Specif-
ically, untargeted metabolomics was first used to profile a set of
paired tissue and plasma samples from 34 colorectal cancer
(CRC) patients. Next, univariate correlation analysis was used
to select correlative metabolite pairs between tissue and plasma,
and a random forest regression model was utilized to define 243 TTD metabolites in plasma samples. The TTD metabolites in
CRC plasma were demonstrated to accurately reflect the pathological status of tumor tissue and have great potential for
metabolite biomarker discovery. Accordingly, we conducted a clinical study using a set of 146 plasma samples from CRC
patients and gender-matched polyp controls to discover metabolite biomarkers from TTD metabolites. As a result, eight
metabolites were selected as potential biomarkers for CRC diagnosis with high sensitivity and specificity. For CRC patients after
surgery, the survival risk score defined by metabolite biomarkers also performed well in predicting overall survival time (p =
0.022) and progression-free survival time (p = 0.002). In conclusion, we developed a new analysis strategy which effectively
discovers tumor tissue related metabolite biomarkers in plasma for cancer diagnosis and prognosis.

Untargeted metabolomics measures the alterations of
metabolic profiles from tissue and biofluid samples in

relevance to the disease phenotype and aims to discover
metabolite biomarkers for clinical applications, such as cancer
diagnosis and prognosis.1,2 However, in untargeted metab-
olomics studies of biofluid samples, unwanted confounding
factors irrelevant to diseases often lead to the discovery of false
positive biomarkers.3 For example, metabolic profiles of human
blood and urine are significantly affected by gender, lifestyle,
diet, etc.4−6 Some physiological confounding factors, such as
age and gender, could be controlled or partially removed
through a proper study design. Nevertheless, many other
confounding factors, such as lifestyle, diet, and medication, are
difficult to quantify and evaluate.3 Therefore, metabolite

biomarkers discovered in biofluids may not necessarily reflect
the pathological status of tumor tissue, which makes these
biomarkers difficult to reproduce.7 For example, Cheng et al.8

and Leichtle et al.9 found that alanine was decreased in urine
and serum from colorectal cancer (CRC) patients, but Qiu et
al.10 reported that alanine was significantly increased in
colorectal tumor tissue. Sreekumar et al. revealed the potential
role of sarcosine in tumor tissues for the pathological
progression of prostate cancer, but they failed to discover
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any significant changes of sarcosine in plasma and urine
samples from prostate cancer patients.11 Accordingly, very few
metabolite biomarkers in biofluids have been translated into
clinical cancer diagnosis, due to their poor capability to
indicate the metabolic dysregulation induced by tumor tissue.
To address this challenge, many efforts were made to

improve the reliability and reproducibility through analyzing
multiple types of samples. For instance, Hori et al. performed a
metabolomics study on tissue and serum samples from lung
cancer patients and healthy controls and found that metabolites
simultaneously dysregulated in tumor tissue and serum
exhibited similar changes in both sample types, including
lactic acid, fumaric acid, malic acid, proline, and threonine.12

However, no studies have yet systematically assessed the
consistency of metabolic dysregulation between tumor tissue
and biofluid samples. Particularly, no one has developed an
effective method to integrate metabolic information from both
tumor tissue and biofluid samples toward the reliable discovery
of metabolite biomarkers. Here, we aim to analyze the global
metabolic dysregulation of CRC in both tumor tissue and
plasma samples and simultaneously develop a correlative
analysis strategy to discover tumor tissue derived (TTD)
metabolites in biofluids (e.g., plasma).
Colorectal cancer is one of the most common cancers

worldwide with a high fatality rate. There were an estimated
1.4 million new cases and 700,000 deaths in 2012.13 Early
screening can discover CRC in early stages, and subsequent
surgical treatment provides a promising prognosis. For patients
diagnosed at a localized stage, surgical removal of the tumor
and nearby lymph nodes significantly improves the 5-year
survival rate to as high as 90%. In contrast, the 5-year survival
rate is less than 70% when patients are diagnosed at later stages
(e.g., with regional or distant metastasis).14 Unfortunately,
traditional methods for clinical CRC screening, including
enteroscopy tests and fecal examinations, have significant
limitations.15−17 In addition, molecular biomarkers for CRC
including carcinoembryonic antigen (CEA) and carbohydrate
antigen 19-9 (CA19-9) are not sensitive enough to detect early
stage CRC patients.18 Therefore, there is an urgent need to
develop an alternative method with high accuracy, minimal
invasion, and a low cost for CRC screening and early diagnosis.
Blood metabolite biomarkers are considered to be an
alternative choice.19

In this study, a set of paired colorectal cancer and adjacent
normal tissues were excised from the CRC patients during
surgery (n = 68), and paired preoperative and postoperative
plasma samples (n = 68) from the same patients were also
collected on the day before surgery and the seventh day after
surgery, respectively. Next, untargeted metabolomics analyses
were performed on both tissue and plasma samples.
Particularly, a correlation analysis strategy was developed to
discover the TTD metabolites in the plasma of CRC patients.
To demonstrate the potential clinical application, plasma
samples from 73 CRC patients and 73 gender-matched polyp
controls were used as the training set and external validation
set, respectively, to discover TTD metabolite biomarkers for
CRC. Finally, eight potential metabolite biomarkers in plasma
were discovered and demonstrated to have high sensitivity and
specificity for CRC diagnosis. More importantly, metabolite
biomarkers also performed well in predicting the prognosis of
CRC patients after surgery, including the overall survival (OS)
and progression-free survival (PFS). In summary, we
developed a correlation analysis strategy to discover the

tumor tissue derived metabolite biomarkers in plasma which
hold great clinical potential for CRC diagnosis and prognosis.

■ EXPERIMENTAL SECTION
Participant Eligibility Criteria. Between April 2015 and

June 2016, all CRC patients and polyp controls were recruited
from the Colorectal Surgery Department of Harbin Medical
University Cancer Hospital (Harbin, China) with written
informed consent. The eligibility criteria were set as follows:
(1) participants were not receiving any medical treatment; (2)
everyone was not diagnosed with any metabolic diseases, such
as kidney diseases, liver diseases, or other cancers; (3) CRC
patients had undergone colorectal surgical treatment, and their
diagnosis had been confirmed and staged by histopathologic
examinations. All of the patients were staged according to the
Union for International Cancer Control (UICC) pathologic
tumor-node-metastasis (TNM) classification system (eighth
edition, 2016). This study was approved by the Ethics
Committee of the Harbin Medical University Cancer Hospital.
Experimental details about sample collection, metabolite

extraction, and liquid chromatography−mass spectrometry
(LC-MS) data acquisition are provided in the Supporting
Information.

Data Processing. First, ProteoWizard (version 3.06150)
was used to convert raw MS data (.d) files to the mzXML
format, and R package “XCMS” (version 3.2) was used for data
processing. The generated data matrix consisted of the mass-
to-charge ratio (m/z) value, retention time (RT), and peak
abundance. R package “CAMERA” was used for peak
annotation after XCMS data processing. Metabolic peaks
detected less than 50% in all the quality control (QC) samples
were excluded. Subsequently, the R package “MetNormalizer”
was used for the normalization of each metabolic peak in
subject samples to remove unwanted system error that
occurred among intra- and interbatches.20 Minimum value
(half of the least nonzero value) or a random forest (RF)
regression model (R packages “missForest”) was used for
missing data imputation before differential analysis and
correlation analysis, respectively. The combination of accurate
mass and experimental MS/MS match against our in-house
tandem MS spectral library and other databases (NIST,
METLIN, and MassBank) is used for metabolite identification.
The final eight compounds (chenodeoxycholic acid, creatinine,
dihydrothymine, histidine−glycine, L-gulonic γ-lactone, L-
tryptophan, L-tyrosine, and xanthine) were confirmed using
the purchased chemical standards.

Statistical Analyses. All statistical analyses were per-
formed using R (version 3.3.2). An unsupervised principal
component analysis (PCA) was applied to visualize the global
metabolic profiles among groups (using R function “prcomp”).
Next, a supervised model of orthogonal partial least-squares
discriminant analysis (OPLS-DA) was applied to describe the
global metabolic changes between cancer and control groups.
To avoid the overfitting, a permutation test was performed 200
times to assess the validity of the discriminant models. The
variable important in the projection (VIP) value was calculated
for each variable in the OPLS-DA model. Additionally, a
univariate analysis of paired t test or Wilcoxon Mann−Whitney
U test with Benjamini−Hochberg-based false discovery rate
(FDR) adjusted was performed using the R package “fdrtool”
for differential analysis between self-paired and nonpaired
samples, respectively. Dysregulated metabolites with a FDR
adjusted p value less than 0.05 and VIP value larger than 1
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were selected and mapped into the KEGG database (http://
www.genome.jp/kegg/) for pathway enrichment analysis using
the hypergeometric test. The median intensity of dysregulated
metabolites from each pathway was used to represent the
pathway expression level.
Spearman rank correlation analysis was used to select the

correlative metabolite pairs between CRC plasma and tissue,
and a p value less than 0.05 was set as the significance level. A
multivariate correlation-based RF regression model with a
permutation test (500 times) was then performed to evaluate
the correlation of between dysregulated metabolites in plasma
and tissue samples (using the R package “randomForest”). The
least absolute shrinkage and selection operator (LASSO)
regression with a 10-fold cross-validation was repeated 20
times for the discovery of metabolite biomarkers (using the R
package “glmnet”). The network graph between tissue
dysregulated metabolites and metabolite biomarkers in CRC
plasma was drawn using Cytoscape (version 3.5.0). Finally,
receiver operating characteristic (ROC) curves were plotted

using the R package “pROC” to evaluate the diagnostic
performance of metabolite biomarkers. The area under the
curve (AUC) value and 95% confidence interval (CI) were
calculated to assess the accuracy of prediction. Survival curves
were used to demonstrate the performance of predicting the
prognosis using metabolite biomarkers, and a log-rank test was
utilized to analyze the statistical differences between different
groups of CRC patients (using the R package “survminer”).

■ RESULTS AND DISCUSSION

Metabolic Profiles of CRC Tissue and Plasma. LC-MS-
based untargeted metabolomics was used to profile a set of
paired tissue and plasma samples from 34 CRC patients
(tumor tissue vs adjacent control; preoperative plasma vs
postoperative plasma) and to investigate the global metabolic
dysregulation in colorectal cancer. The clinical information on
enrolled patients is listed in the Supporting Information, Table
S1. To increase the coverage in untargeted metabolomics, both
positive and negative modes of mass spectrometry measure-

Figure 1.Metabolic dysregulation in CRC tissue and plasma samples. (A) Bar graphs demonstrating the global coverage of CRC tissue and plasma
metabolic profiles. (B) Supervised OPLS-DA plot for metabolic profiles of CRC tissues and controls. (C) Supervised OPLS-DA plot for metabolic
profiles of preoperative and postoperative plasma samples. (D) Venn diagram showing the shared and unique dysregulated metabolic peaks
between CRC tissue and plasma samples. (E) Pie chart for shared dysregulated metabolic peaks is divided into four sections with different
dysregulation trends. (F) Venn diagram showing shared and unique dysregulated pathways between CRC tissue and plasma samples. (G) Heatmap
for shared dysregulated pathways between CRC tissue and plasma samples. Red represents up-regulated, and blue represents down-regulated.
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ments with two LC columns (amide and T3) were utilized to
profile polar and nonpolar metabolites. QC samples in an
unsupervised model of PCA plots were clustered tightly, which
indicated that the data quality was very good (Supporting
Information, Figure S1). A total of 68,020 and 34,347
metabolic peaks were detected in CRC tissue and plasma,
respectively. The numbers of dysregulated metabolic peaks
(paired t test with FDR adjusted p < 0.05) were 18,118 and
10,398 in tissue and plasma, respectively (Figure 1A). In a
supervised model of OPLS-DA, CRC tumor tissues were
clearly separated with healthy controls, indicating different
metabolic profiles between them (Figure 1B). Similarly,
preoperative plasma samples from patients with CRC tumors
were also significantly different from the paired postoperative
plasma samples after tumor resection (Figure 1C). Permuta-
tion tests demonstrated that the OPLS-DA models were well
fitted (Supporting Information, Figure S2). We also analyzed
the numbers of metabolic peaks with fold change larger than
three standard deviations and defined them as significantly
dysregulated peaks toward CRC tumors. There were 1173
significantly dysregulated peaks discovered in tumor tissue
samples, which is much larger than those discovered in plasma
samples (299, Supporting Information, Figure S3). These
results demonstrated that the CRC tumor induced significant
shifts on metabolic profiles on both tumor tissue and plasma
samples. In agreement, the metabolic changes in tumor tissue
were significantly larger than those in plasma samples.
Metabolic Consistency between CRC Tissue and

Plasma. We further compared the dysregulated metabolic
peaks shared by CRC tissue and plasma and evaluated the
consistency of metabolic profiles between two sample types.
However, less than 10% of the dysregulated metabolic peaks
were shared in both sample types (Figure 1D). More
importantly, only half of these shared metabolic peaks
displayed the same up- or down-regulation trends in both
sample types (Figure 1E). Pathway enrichment analyses were
also performed by mapping dysregulated metabolites into the

KEGG database. As a result, 22 and 16 enriched pathways were
discovered from tumor tissue and plasma samples, respectively.
Nine enriched pathways were shared between two sample
types (Figure 1F; Supporting Information, Tables S2 and S3).
Among them, five pathways were found to be up-regulated
both in CRC tumor tissue and in preoperative plasma samples,
whereas the glycine, serine, and threonine metabolism was
down-regulated in both cancer sample types (Figure 1G).
However, the other three pathways, including the citrate cycle,
displayed completely different trends between tumor tissue
and plasma samples. At the individual level, the trends for
patient-specific changes of metabolic pathways were roughly
consistent with the overall results. However, some exceptions
existed and suggested that the patient-specific metabolic
variation between tissue and plasma is more complex
(Supporting Information, Figure S4). These results clearly
demonstrated that the metabolic dysregulation from the same
patients was sample-type-dependent, and metabolic dysregula-
tion in CRC tumor tissue was significantly different from that
in plasma samples. Therefore, it proved that the metabolite
biomarkers discovered in tumor tissue may not be consistent
with those discovered in plasma samples, and vice versa. This
also confirmed that it is difficult to discover TTD metabolite
biomarkers using biofluid samples.4

Additionally, we found that glycolysis is significantly
increased in CRC tumor tissue (p = 0.031, Supporting
Information, Table S2), due to the Warburg effect.21

Nevertheless, there is little change of glycolysis in CRC
plasma (p = 0.426, Supporting Information, Table S3). A
possible explanation is that the dysregulated metabolites in
tissue are likely to be diluted or compensated during the
circulation. Instead, a significant disturbance of the pyruvate
metabolism (which is downstream of glycolysis) was unveiled
in CRC plasma (p = 0.002, Supporting Information, Table S3).
This suggested that TTD metabolites in plasma hold great
potential to reflect the pathological status of CRC.

Figure 2. Analytical strategy to discover tumor tissue derived metabolites followed by the discovery of metabolite biomarkers in plasma for CRC
diagnosis and prognosis.
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Discovery of Tumor Tissue Derived Metabolites in
Plasma. Here, we developed a new analysis strategy by
integrating the univariate and multivariate correlation analysis
to discover TTD metabolites in plasma and further to select a
panel of metabolite biomarkers for clinical CRC diagnosis and
prognosis (study workflow is illustrated in Figure 2, and
analysis strategy is shown in Figure 3A). Paired tissue and
plasma samples from 34 previous CRC patients were assigned
to two data sets: tissue discovery set (n = 68) and plasma
discovery set (n = 68). Dysregulated metabolites in both data
sets with FDR adjusted p < 0.05 and VIP > 1 were selected
(898 and 693 in tissue and plasma data sets, respectively).
First, the univariate Spearman rank analysis was used to
correlate each dysregulated metabolite in plasma with each of
those in tissue samples, and correlative metabolite pairs with p
< 0.05 were reserved. For each dysregulated metabolite in
plasma, all of its correlated dysregulated metabolites in tissue
were utilized to build a multivariate correlation-based RF
regression model and to predict the corresponding dysregu-
lated metabolite in plasma. The value of R2 is calculated to
characterize the fitting of the RF regression model.
Importantly, metabolites in tumor tissue and preoperative
plasma samples from the same CRC patient were paired to
perform the RF regression. In contrast, the same regression

analysis was also performed using the same metabolites in the
tissue and plasma samples but from randomly matched
patients, which was used as a permutation test to evaluate
the haphazard effect. The permutation test was repeated 500
times to generate the random distribution of the R2 value. The
R2 value with a cumulative percentage less than 1% in the
random distribution was determined as the threshold for the
true correlation. Finally, 243 out of 693 dysregulated
metabolites in CRC plasma were regarded as TTD metabolites
(R2 > 0.177). Among them, 173 metabolites were up-regulated
and 70 metabolites were down-regulated (Figure 3B and Table
S4 in the Supporting Information).
We further performed an unsupervised hierarchical cluster

analysis (HCA) using 243 TTD metabolites in plasma to
discriminate CRC patients before and after surgery. More than
90% preoperative plasma samples were clustered tightly and
clearly separated with postoperative ones (Figure 3C).
Furthermore, two independent RF regression models were
constructed using either 243 TTD metabolites in plasma or
898 dysregulated metabolites in tumor tissue to predict the
stages of the same CRC patients, respectively. Both of the two
prediction models can accurately classify CRC patients
according to their pathological stages. In particular, the
prediction score using a plasma-metabolite-based prediction

Figure 3. Correlation analysis strategy to discover tumor tissue derived metabolites in CRC plasma. (A) Analysis strategy to discover tumor tissue
derived metabolites in plasma. PD, plasma dysregulated; TD, tissue dysregulated; TTD, tumor tissue derived. (B) Distributions of fold changes and
R2 values for TTD metabolites in CRC plasma. The cutoff of R2 values is set at 0.177. Red, up-regulated; green, down-regulated; gray, unselected.
(C) Heatmap for the discrimination between preoperative and postoperative plasma samples using 243 TTD metabolites. (D) Scatter plot
displaying the prediction scores using the TD metabolites in tissue and TTD metabolites in plasma to predict the pathological stages of CRC
patients.
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model displayed an excellent linear relationship with that using
the tissue-metabolite-based model (r = 0.980, p < 0.001, Figure
3D). Collectively, these results confirmed that TTD metabo-
lites in plasma accurately reflect the pathological status and
tumor stages of CRC patients and have a high diagnostic
potential for clinical applications.
Discovery of Metabolite Biomarkers for CRC Diag-

nosis. Most types of CRC are developed via the “adenoma−
carcinoma sequence”.22 Therefore, detecting the transforma-
tion from polyps to carcinoma is critical for CRC screening
and prevention. Accordingly, 146 recruited CRC patients and
gender-matched polyp controls were enrolled to discover the
potential metabolite biomarkers from the panel of TTD
metabolites for CRC diagnosis (Figure 2). Plasma samples
from 34 CRC patients and 34 gender-matched polyp controls
were defined as the plasma training set. The rest of the plasma
samples were assigned to plasma external validation set (n =
78). Clinical information for all participants is summarized in
Table S1 in the Supporting Information.
In order to select a panel of metabolite biomarkers from the

243 TTD metabolites, we performed the LASSO regression
analysis using the plasma training set. A 10-fold cross-
validation approach was used to estimate the optimal
parameter (i.e., lambda) of the model and to select the
optimal combination of variables (Supporting Information,
Figure S5A). In order to ensure the robustness and
reproducibility, this analysis process was repeated 20 times.
Consequently, eight metabolites (i.e., chenodeoxycholic acid

(CDCA), creatinine, dihydrothymine, histidine−glycine (His-
Gly), L-gulonic γ-lactone, L-tryptophan, L-tyrosine, and
xanthine) that recurred in all 20 models were selected as
potential metabolite biomarkers for CRC diagnosis with strong
statistic powers, and all of the identifications were confirmed
by the commercial chemical standards (Supporting Informa-
tion, Figure S6 and Table S5). These metabolites were
generally involved in metabolism such as bile acids, amino
acids, pyrimidine, and purine, which were reported to play
important roles during carcinoma progression.23−28 More
explanations are provided in the Supporting Information.
All of the potential metabolite biomarkers were significantly

dysregulated in plasma samples from CRC patients (Support-
ing Information, Figure S5B and Table S6). Among them,
dihydrothymine and L-gulonic γ-lactone were up-regulated in
CRC patients, whereas CDCA, creatinine, His-Gly, L-
tryptophan, L-tyrosine, and xanthine were down-regulated.
Particularly, five out of them were previously reported being
closely associated with CRC in biofluid samples. In the current
study, we found that xanthine was down-regulated in CRC
plasma, and Long et al. reported a similar result in CRC
serum.29 The primary bile acid CDCA was found to be down-
regulated in CRC plasma compared with polyps, which is
consistent with previous serum metabolomics studies.30,31

Down-regulated creatinine in CRC plasma was revealed in this
study, which is broadly consistent with various metabolomics
studies using CRC urine, serum, and tissue samples.8,32,33

Moreover, our finding supports that L-tryptophan and L-

Figure 4. Clinical validation of potential metabolite biomarkers for CRC diagnosis and prognosis. (A) ROC curves of LASSO discriminant model
performed in plasma training set and external validation set. (B) Scatter plot of the comparison result between the LASSO discriminant model and
CEA in distinguishing CRC patients and polyp controls. (C,D) Kaplan−Meier survival curves for the overall survival and progression-free survival
of CRC patients, respectively. Patients with a LASSO risk score greater than 0.798 were defined as the higher risk group, and other patients were
defined as the lower risk group. Log-rank test was used to evaluate survival differences.
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tyrosine were down-regulated in CRC plasma samples, which
are in agreement with the previous discovery using CRC urine
and serum samples.8,9 These results confirmed that our
discovery is excellent in reliability.
In the previous correlative analysis, 48 metabolites in tumor

tissue were significantly correlated to the eight TTD
metabolite biomarkers in plasma and enriched into 12
metabolic pathways. Among them, arginine and proline
metabolism, cysteine and methionine metabolism, purine

metabolism, pyrimidine metabolism, and β-alanine metabolism
were significantly dysregulated and enriched in CRC tissue
with p < 0.005 and considered as potential therapeutic targets
(Supporting Information, Figure S5C and Table S2).

Clinical Performance for CRC Diagnosis and Prog-
nosis. In order to evaluate the clinical performance of
metabolite biomarkers, a LASSO discriminant model (eq 1)
was constructed in the plasma training set and applied to the
plasma external validation set:

prediction score 3.040 7.74 10 M 4.81 10 M 3.91 10 M

7.41 10 M 3.90 10 M 7.83 10 M

1.64 10 M 5.55 10 M

7
CDCA

5
creatinine

5
dihydrothymine

4
gulonic lactone

5
His Gly

6
tryptophan

7
tyrosine

6
xanthine

= − × − × + ×

+ × − × − ×

− × − ×

− − −

−
γ‐

−
‐

−

− −
(1)

ROC curves in Figure 4A demonstrated the excellent
diagnostic performances for metabolite biomarkers in both
data sets (plasma training set, AUC = 0.993, 95% CI: 0.979−
1.000; plasma external validation set, AUC = 0.880, 95% CI:
0.807−0.978). The cutoff value for the prediction score (or
called “LASSO risk score”) was set as 0.505. The diagnosis
model using the metabolite biomarkers performed much better
than using the conventional CEA (with a cutoff value of 5 ng/
mL), especially in the detection of early stage CRC patients.
The diagnostic sensitivities were 86.3 and 43.8% for metabolite
biomarkers and CEA, respectively, and the specificities were
90.4 and 86.3% for metabolite biomarkers and CEA,
respectively (Figure 4B). However, we also evaluated that
the combination of the metabolite biomarkers and CEA did
not improve the diagnostic performance (Supporting In-
formation, Figure S7). These results indicate that the LASSO
discriminant model is promising for the clinical diagnosis of
CRC patients against polyp controls.
Finally, we divided all of the 73 CRC patients into two

groups using the median value of LASSO risk score (0.798).
Accordingly, 36 CRC patients were defined as the lower risk
group, and 37 others were assigned to the higher risk group.
To date, seven patients in the lower risk group and five in the
higher risk group were lost to follow-up, respectively. A
Kaplan−Meier survival test was then used to predict the CRC
progression using the OS time and PFS time (Figure 4C,D).
The median OS time was 39.03 months (95% CI: 37.17−
40.90) of the lower risk group, significantly longer than 34.03
months of the higher risk group (95% CI: 30.28−37.80, p =
0.022). Meanwhile, the median PFS time was 39.03 months
(95% CI: 37.17−40.90) of the lower risk group, which was also
longer than the 30.99 months of the higher risk group (95%
CI: 26.70−35.27, p = 0.002). These results confirmed that the
metabolite biomarkers are closely associated with the CRC
prognosis.

■ CONCLUSIONS
In summary, we developed an effective analysis strategy for the
discovery of tumor tissue derived metabolites in biofluids.
Using this strategy, 243 tumor tissue derived metabolites were
successfully revealed in plasma samples. This is the first time
the consistency of metabolic dysregulation between CRC
tumor tissue and biofluids samples was evaluated. As expected,
metabolic changes in CRC tumor tissue were larger than those
in plasma samples, and the shared parts between them were
very limited. Most importantly, we have analyzed and

demonstrated the complex correlation between tumor tissue
and plasma samples from patients and finally discovered eight
potential metabolite biomarkers in plasma for CRC diagnosis
and prognosis. These metabolite biomarkers were promising
for further clinical applications. However, an MRM-based
targeted metabolomics study focused on these potential
metabolite biomarkers should be carried out with large-scale
and multicenter cohorts for rigorous external validations and to
determine the optimal cutoff value of diagnosis in clinical
applications.
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