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Abstract

Liquid chromatography–mass spectrometry (LC–MS)-based untargeted metabolomics provides systematic profiling of metabolic. Yet,
its applications in precision medicine (disease diagnosis) have been limited by several challenges, including metabolite identification,
information loss and low reproducibility. Here, we present the deep-learning-based Pseudo-Mass Spectrometry Imaging (deepPseu-
doMSI) project (https://www.deeppseudomsi.org/), which converts LC–MS raw data to pseudo-MS images and then processes them
by deep learning for precision medicine, such as disease diagnosis. Extensive tests based on real data demonstrated the superiority
of deepPseudoMSI over traditional approaches and the capacity of our method to achieve an accurate individualized diagnosis. Our
framework lays the foundation for future metabolic-based precision medicine.
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Introduction
Liquid chromatography–mass spectrometry (LC–MS)-
based untargeted metabolomics is a powerful tool that
enables the identification of biomarkers for precision
medicine [1], such as diagnosing diseases [2], customiz-
ing drug treatments [3] and monitoring therapeutic
outcomes [4]. The traditional processing and analysis
method for LC–MS-based untargeted metabolomics in
precision medicine can usually be divided into four steps
[5] (Supplementary Figure S1): (1) raw data processing,
(2) data cleaning, (3) metabolite identification and (4)
diagnosis (prediction) model building. However, existing
approaches suffer from several limitations. The first
disadvantage is the information loss and misidentifica-
tion of metabolites. Metabolite annotation is still one of
the most challenging tasks for LC–MS-based untargeted
metabolomics [5]. Most of the metabolite identification
methods are based on database resources [6]; therefore,
many metabolites not identified before are usually
bypassed by the studies [7]. Current instruments usually
detect tens or hundreds of thousands of metabolic
features; however, only about 10% of those detected
features could be identified in most experiments

[7]. In addition, peak picking may lose low-intensity
signals or mistakenly align features. This means that
most of the information is lost in the further step of
diagnosis/prediction model construction. The second
disadvantage is the low reproducibility of LC–MS analysis
[8]. During data acquisition, the retention time (RT),
the mass-to-charge ratio (m/z) and signal intensity
drift can commonly cause unwanted variations and
significantly affect the diagnosis (prediction) accuracy.
These substantially limit the application of LC–MS-based
untargeted metabolomics in precision medicine [9].

To overcome these limitations of the prior traditional
methods, we presented the deepPseudoMSI project
(deep-learning-based Pseudo-Mass Spectrometry Imag-
ing, https://www.deeppseudomsi.org/). Mass spectrom-
etry imaging (MSI) can image thousands of molecules
in a single experiment, making it a valuable tool for
diagnosis [10]. The LC–MS raw data can be seen as an
image containing millions of data points defined by
RT, mass-to-charge ratio and intensity. Instead of peak
picking to extract the metabolic feature table, we could
also process the raw data as images to be handled by
deep learning methods [11].
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Results
The computational workflow of deepPseudoMSI
The deepPseudoMSI includes two parts. The first
part is the pseudo-MS image converter, which con-
verts the LC–MS raw data to images (Figure 1A and
Supplementary Figure S2). The LC–MS raw data usually
contains millions of data points, so we need to divide it
into different pixels (or grids) based on the revolution
in the x-axis (RT) and y-axis (mass-to-charge ratio) to
reduce the size. Briefly, all the data points in the same
pixel are combined to represent the intensity of this pixel.
Then, the intensity of each pixel is linearly transformed
to the color of the pixel. Finally, one LC–MS raw data
with millions of data points is converted into an image
with thousands of pixels based on the resolution (for
example, 224 × 224). The final generated ‘image’ contains
all the information from the LC–MS raw data, which
is termed the pseudo-MS image. The second part is
the pseudo-MS image predictor, a pre-trained VGG16
network (convolutional neural networks) [12], which
is fine-tuned to extract various image features from
the pseudo-MS images to construct a prediction model
(Figure 2B and Supplementary Figure S3). Supervised
deep learning models require a large number of labeled
data to train [13]. To enlarge the number of pseudo-
MS images for training, we adopt a strategy called data
augmentation [14] (Supplementary Figure S4). Briefly, we
randomly add the RT, m/z and intensity errors for each
pseudo-MS image to simulate the drift during the data
acquisition. Finally, several simulative images could be
generated from one actual pseudo-MS image, which can
significantly enlarge the number of images for training.

Compared with the traditional method, deepPseu-
doMSI does not need to annotate metabolites because all
the information from the raw data is used for subsequent
processing and analysis. In addition, the drift of RT and

m/z during data acquisition represents the shift of one
pseudo-MS image on the x- and y-axis. And the drift
of intensity just represents the brightness changing of
one pseudo-MS image. Our results show that the deep
learning model can easily handle those variations and
does not affect its prediction accuracy. Collectively, the
pseudo-MS image can overcome the disadvantages of the
traditional method, which may improve the application
of LC–MS in precision medicine.

DeepPseudoMSI predicts the gestational age of
pregnant women
To gauge the effectiveness of deepPseudoMSI, it is used to
predict the gestational age (GA, week) of pregnant women
[15] (Supplementary Figure S5) using our previously
published dataset. This provides a more cost-effective
method for pregnancy dating. First, the LC–MS raw
data were converted to pseudo-MS images using the
pseudo-MS image converter. To identify the optimal
resolution of the pseudo-MS images, we compared the
generally used 224 × 224 and 1024 × 1024 resolutions
presetting. And the first one achieved a better prediction
result [root mean square error (RMSE): 3.61 versus 6.10]
(Supplementary Figure S6), so the 224 × 224 resolution
was chosen for the pseudo-MS image generation. The
data augmentation method was utilized to get lots of
simulative pseudo-MS images for training to construct
the prediction model. And then, the prediction model was
built using the pseudo-MS image predictor. To evaluate
the prediction model’s performance based on deepPseu-
doMSI, the 5-fold cross-validation method was utilized
(Supplementary Figure S7). Intriguingly, the RMSE is
4.1 weeks [mean absolute error (MAE) is 2.7 weeks;
adjusted R2 is 0.79] (Figure 2A), which is better than
the prediction result using the traditional method with
all features (Random Forest model, RMSE: 4.34 weeks;

Figure 1. The workflow of converting LC–MS raw data to pseudo-MS images and the deep learning-based prediction model (deepPseudoMSI). (A)
Schematic of converting LC–MS raw data to pseudo-MS images (image converter). LC–MS untargeted metabolomics raw data with millions of data
points (x-axis represents RT, and the y-axis represents m/z) is binned into different pixels according to revolutions. The total intensity is calculated and
transferred to a responded gray degree for each pixel. (B) Schematic of prediction model construction (image predictor). To generate more pseudo-MS
images for training, RT, m/z and intensity drift are utilized for data augmentation for each pseudo-MS image. Then, the pseudo-MS images are projected
for model training and construction using the VGG16 network.
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Figure 2. DeepPseudoMSI predicts gestational age in pregnant women. (A) Gestational age predicted by deepPseudoMSI (y-axis) highly correlates with
clinical values determined by the standard of care (x-axis). Different colors represent samples in different folds (5-fold cross-validation). (B) Highly
correlated GA predicted by deepPseudoMSI (y-axis) and actual GA (x-axis) at the individual level.

adjusted R2: 0.76, Supplementary Figure S9. The permu-
tation test P-value <0.05). In addition, the deepPseu-
doMSI can get good prediction accuracy at the individual
level (Figure 2B and Supplementary Figure S8). This
result demonstrates that the deepPseudoMSI has the
potential to be leveraged for clinical diagnosis in the
future.

Validation of DeepPseudoMSI in public datasets
To further present the application of deepPseudoMSI
to precision medicine cases, we then applied it to the
other two public datasets found in the MetaboLights
(see Methods). The first one is an endometrial cancer
study (MTBLS3444) [16], and the second one is a colon
cancer study (MTBLS1129) [17]. Both two datasets were
processed using the deepPseudoMSI. For the endometrial
cancer study, the accuracy, specificity and sensitivity are
97.3, 96.4 and 98.9%, respectively (Figure 3A). For the
colon cancer study, the accuracy, specificity and sensi-
tivity are 87.8, 67.2 and 90.7%, respectively (Figure 3B).
In summary, all these results further demonstrate that
deepPseudoMSI can be used for accurate diagnosis and
prognosis evaluation of diseases.

DeepPseudoMSI can overcome the disadvantages
of the traditional methods for LC–MS data
To demonstrate that deepPseudoMSI can overcome the
disadvantages of the traditional methods for
LC–MS data, we designed an experiment to simulate
the pervasive issue in LC–MS data acquisition, RT drift.
Briefly, the random RT error was added to each raw
data to simulate the RT drift during data acquisition
(Figure 4A and Supplementary Figure S10). We named
the raw dataset ‘original dataset’, and the simulative
dataset ‘RT drift dataset’. And then, both datasets were

Figure 3. The application of deepPseudoMSI on public datasets. The
accuracy, specificity and sensitivity for public datasets MTBLS3444 A and
MTBLS1129 B, respectively.

used for the raw data processing (traditional method)
and pseudo-MS image conversion (deepPseudoMSI),
respectively. The overlapped features between the
original and the RT drift datasets are tiny (Jaccard index:
0.324, Figure 4B), which is within the expectation [18].
Then we used the traditional method and deepPseu-
doMSI to construct the prediction model and validate
results in original and RT drift datasets, respectively.
Remarkably, the deepPseudoMSI has no difference
in the prediction accuracy between the original and
RT drift datasets (Figure 4C and D). However, for the
traditional method, the RT drift dataset’s prediction
accuracy significantly decreases compared with the
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Figure 4. DeepPseudoMSI can handle most of the disadvantages of the traditional method. (A) Schematic simulation of RT drift in untargeted
metabolomic data and then utilize the traditional method to process and construct prediction models. (B) Venn diagram shows the metabolic features
matching between original and RT drift datasets. (C) Predicted error distribution of original and RT drift datasets that processed utilized deepPseudoMSI
and traditional methods, respectively. (D) Sankey diagram shows the absolute predicted errors for each sample in different datasets and methods.

original dataset (Figure 4D). About 16% of samples whose
prediction errors are between 0 and 2 weeks in the
original dataset then increased to 2–5 weeks in the RT
drift dataset. Collectively, those results demonstrate that
the deepPseudoMSI can overcome the disadvantages of
the traditional methods for LC–MS-based untargeted
metabolomics in diagnosis.

Discussion
To our best knowledge, this is the first systematic study
that converts the LC–MS-based untargeted metabolomics
data to pseudo-MS images and then takes advantage
of the power of deep learning in image processing for
precision medicine [19–22]. We also demonstrate that
the deepPseudoMSI can overcome the limitations of
the traditional method for LC–MS data in precision
medicine. In summary, those results indicate that the
deepPseudoMSI has the potential ability to significantly
increase the application of MS in clinics for precision
medicine.

As a pilot study, our research has some shortcomings
that we need to improve. First, deep learning methodol-
ogy is a black-box-like process, and we do not know the
details of the pseudo-MS image process that contributes
the most to our prediction. Second, we only use one
mode of the LC–MS data (positive mode) to convert it
to the pseudoMS image. Next, we plan to explore how to
combine datasets of different chromatography and Elec-
trospray ionization (ESI) modes to increase the prediction
accuracy. We believe the deepPseudoMSI can provide

a new data analysis direction for precision medicine
using LC–MS-based untargeted metabolomics data. We
only used untargeted metabolomics to demonstrate the
application of deepPseudoMSI, this strategy can also be
easily applied to LC–MS-based untargeted lipidomics and
proteomics data.

Methods
PseudoMS image converter
The pseudo-MS image converter is designed and devel-
oped to convert the LC–MS-based untargeted metabolom
ics raw data to pseudo-MS images. Briefly, the LC–
MS-based untargeted metabolomics raw data (from
MS instrument) is first converted to mzXML format
data using msConvert [23] or massconverter [24]. And
then, the mzXML format data is imported to the R
environment using the readMSData function from the
MSnbase package [25]. Then the data points are filtered
based on the m/z, RT and intensity. The thresholds for
the filtering should be based on the experiment and
design. In our case study, the RT cutoff is set as RT > 50
and RT < 1000 s, and the m/z cutoff is set as m/z > 70
and m/z < 1000 Da. We then divide the data points by
the y-axis (m/z) into different pixels (or grids) based on
the set resolution. For example, if the pseudo-MS image
resolution is set as 224 × 224, the data points in each
scan are divided into 224 grids, and the data points in
the same grid are combined as one pixel. The data points
in one pixel have close RT and mass-to-charge ratio, so
they may be similar metabolites with the same biological

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/5/bbac331/6659741 by Stanford M

edical C
enter user on 13 August 2023



Deep learning-based pseudo-mass spectrometry imaging analysis | 5

functions. Then for the x-axis (RT), the scans are divided
into different grids based on the resolution. Then the LC–
MS raw data is converted into an image with thousands
of pixels. For each pixel, it contains data points that
are in the range of the pixel (x-axis and y-axis). Then
the intensity of all the data points is log-transformed to
correct heteroscedasticity and promote the low-intensity
data point contribution [26]. The mean value of all the
data points in this pixel is calculated to represent the
pixel’s intensity. To transform the intensity of each pixel
to color, we linearly transform the intensity of pixel to
color (gray degree, from 0 to 255). Finally, the pseudo-
MS image (black-and-white graph, png format) is gen-
erated with a specific resolution. The pseudo-MS image
converter is written in R and available on GitHub (https://
github.com/deepPseudoMSI-project/deepPseudoMSI/
tree/main/code/pseudoMS-image-converter).

Data augmentation for the training dataset
We developed an augmentation strategy to simulate
pseudo-MS images for training. Briefly, for each mzXML
format data, the MSnbase package is used to read it into
the R environment. We randomly added an RT error, m/z
error and intensity error to all the data points in this
spectrum. The RT error, m/z error and intensity error
are assigned, which are from the ‘error distributions’.
For example, for the RT error, if we set it as 10 s,
we will construct an ‘RT error distribution’ (a normal
distribution with a mean value of 10 s and an SD of 2 s).
Then, for each data point in one scan, an RT error will
be added randomly from the ‘RT error distribution’. The
same strategy is used for m/z and intensity error adding.
And then, the drifted mzXML data is converted to a
pseudo-MS image using the pseudo-MS image converter.
In the case study, we randomly generated six drifted
pseudo-MS images for each data point.

Pseudo-MS image predictor
The image predictor of deepPseudoMSI is a deep
learning-based approach for predicting (diagnosis) using
pseudo-MS images. Using the case study as an example,
we first fine-tuned a pre-trained VGG16network [12]
to extract various image features from the pseudo-
MS images. The extracted image features were then
fed into a global average pooling (GAP) layer, which
transforms the input dimension from N × N × C to
1 × 1 × C, where N is the size of each feature image
and C is the number of features. The output of the
GAP layer was flattened and connected to a stack of
three dense layers to regress the GA. One advantage of
using the GAP layer is that it converts feature images of
any dimension to 1 × 1, allowing our image predictor
network to predict the GA from pseudo-MS images
of any size. The GAP layer can also prevent the deep
neural network from overfitting since it has significantly
reduced the number of model parameters. We trained
our neural network using 5250 pseudo-MS images
(including the drifted pseudo-MS images using a data

augmentation strategy) from 30 subjects (750 samples)
with a 5-fold cross-validation on the NVIDIA GeForce
RTX 2080 GPU (8GB memory, 14 000 MHz clock speed). In
training, we used the Adam optimizer with an initial
learning rate of 0.0001 and a learning rate decay of
0.98. The batch size was set to be 8. The training was
terminated after 100 epochs. The pseudo-MS predictor
is written in Python and available on GitHub (https://
github.com/deepPseudoMSI-project/deepPseudoMSI/
tree/main/code/pseudoMS-image-predictor). In addi-
tion, we also tried other convolutional networks, namely
AlexNet, ResNet, Inception and DenseNet. In the case
studies and public case studies, the VGGNet and
DenseNet got the best performance, so the VGGNet
was reported in our study. However, other different
deep learning models can be easily implemented in the
pseudoMSI predictor based on the different datasets in
the future.

RT drift dataset generation
All the mzXML format data were loaded using the
MSnbase R package [25]. Then for each spectrum, the RT
was randomly added with a specific error to simulate
RT drift in LC–MS data acquisition (RT error is 60 s
and SD is 10 s, see the ‘Data augmentation for the
training dataset’ section). Then the RT drift data were
subjected to peak detection and alignment using XCMS
[27], and the parameter setting is the same as in the ‘Data
augmentation for the training dataset’ section.

Alignment of two metabolic peak tables
Two metabolic feature tables were aligned according to
m/z and RT using the masstools package (mz_rt_match
function) from the tidyMass project [24]. Briefly, only the
features in two metabolic feature tables within the set-
ting cutoff for m/z matching (<10 ppm) and RT matching
(<30 s) are considered the same features. If one feature
matches multiple features, only the feature with the
minimum RT matching error remains.

General statistics analysis and data visualization
All the general statistical analysis and data visualization
are performed utilizing Rstudio (Version 1.3.959) and R
environment (Version 4.1.2). Most of the R packages and
their dependencies used in this study are maintained in
CRAN (https://cran.r-project.org/), Bioconductor (https://
www.bioconductor.org/) or GitHub. The detailed informa-
tion on R packages is provided in the Supplementary
Material. The R package ggplot2 (version 3.2.21) was used
to perform all the data visualization in this study.

Five-fold cross-validation
To avoid information leakage, all the 30 subjects are
randomly assigned to five groups (sample function in R),
and each group has six subjects. Then all the samples are
assigned to different groups based on the subjects. So for
each subject, all its samples are in the same group.
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Random Forest prediction model
The boruta algorithm [28] (R package Boruta, version
6.0.0) is utilized to select potential biomarkers. Briefly, it
duplicates the dataset and shuffles the values in each
column. These values are called shadow features. Then,
it trains a Random Forest classifier (R package random-
Forest) on the dataset and checks for each of the real
features if they have higher importance. If it does, the
algorithm will record the feature as ‘important’. This
process is repeated 100 iterations. In essence, the algo-
rithm is trying to validate the importance of the fea-
ture by comparing it with randomly shuffled copies,
which increases the robustness. This is performed by
comparing the number of times a feature did better
with the shadow features using a binomial distribution.
Finally, the confirmed features are selected as potential
biomarkers for Random Forest model construction.

In the Random Forest model, all the parameters are
used as default settings except ntree (number of trees to
grow) and mtry (number of variables randomly sampled
as candidates at each split). Those two parameters are
optimized on the training dataset, they are combined to
form a set. The performance of each set of parameters
is evaluated using the mean squared error (MSE). The
parameter pair with the smallest MSE is used to build
the final prediction model.

We utilize the 5-fold cross-validation method to
evaluate the prediction accuracy of our models. Briefly,
it is selected as the validation dataset for each fold,
and the remaining 4-fold data are used for the training
dataset. The training dataset is utilized to get the
potential biomarkers using the feature selection method
described above. Then a Random Forest prediction model
is built based on the training dataset. Then the external
validation model is utilized to demonstrate its prediction
accuracy. The predicted GA and actual GA for the
validation dataset are plotted to observe the prediction
accuracy. Then the RMSE, MAE and adjusted R2 are used
to quantify the prediction accuracy.

For internal validation, the bootstrap sampling method
is utilized [4]. We randomly sampled the same number
of samples from the training dataset with replacement
(about 63% of the unique samples on average). We then
used it as an internal training dataset to build the Ran-
dom Forest prediction model using the same selected
features and optimized parameters. The remaining about
37% of the samples were used as the internal validation
dataset. Those steps repeat 1000 times. Finally, we got
more than one predicted GA value for each sample. The
mean value of multiple predicted GA values is used as the
final average predicted GA and used to calculate RMSE,
MAE and adjusted R2.

Permutation test
The first permutation test was utilized to calculate P-
values to assess if the Random Forest prediction models
are not overfitting. In brief, first, all the responses (GA,
week in this study) are randomly shuffled for both

training and validation datasets, respectively. Second, the
potential biomarkers are selected, and the parameters
of Random Forest are optimized in the training dataset
using the method described above. Third, the Random
Forest prediction model uses the selected features and
optimized parameters in the training dataset. Finally,
we use this random forest prediction model to get the
predicted responses for the validation dataset. Then
we get the null RMSE and adjusted R2. We repeat this
process 1000 times, getting 1000 null RMSE and 1000 null
adjusted R2 vectors. Using maximum likelihood estima-
tion, these null RMSE values and adjusted R2 values are
modeled as Gamma distribution, and then the cumu-
lative distribution function is calculated. Finally, the
P-values for the real RMSE and adjusted R2 are calculated
from the null distributions, respectively.

The second permutation test was utilized to calcu-
late the P-value to assess if the depPseudoMSI performs
better than the traditional method. In brief, for the tra-
ditional method, we randomly shuffled the subjects to
different 5-folds and then used this to construct the
Random Forest prediction model and get a new predic-
tion result. This step was repeated 1000 times, so we
have 1000 prediction results for the traditional model.
Then the P-value was calculated based on the method
described above.

Sample preparation and data acquisition of
pregnancy case study
All the sample preparation and data acquisition for the
case study can be found in our previous publication [15].
In brief, 30 pregnant women were recruited, and 750
blood samples were collected during the study. Then all
the blood samples were processed for LC–MS analysis.

LC–MS-based untargeted metabolomics raw data
processing
The mzXML format data (Reverse phase liquid chro-
matography (RPLC)-positive mode) were placed into
different folders according to their class (for example,
‘Blank’, ‘Quality control (QC)’ and ‘Subject’) and then
subjected to peak detection and alignment using the
massprocesser package from the tidyMass project
[24] based on XCMS [27]. Briefly, the peak detec-
tion and alignment were performed using the cent-
Wave algorithm [27]. The key parameters were set
as follows: method = ‘centWave’; ppm = 15; snthr = 10;
peakwidth = c(5, 30); snthresh = 10; prefilter = c(3, 500);
minifrac = 0.5; mzdiff = 0.01; binSize = 0.025 and bw = 5.
Finally, the generated MS1 metabolic feature table
(peak table) includes the mass-to-charge ratio (m/z), RT
(second), peak abundances for all the samples and other
information. This metabolic feature table is used for
the subsequent data cleaning using the masscleaner
package from the tidyMass project [24]. Briefly, the
features detected in <20% QC samples were removed as
noisy from the metabolic feature table. Then the missing
values were imputed using the k-nearest neighbors
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algorithm. Then the metabolic feature table is used for
subsequent statistical analysis.

Public datasets from metaboLights
Two public datasets were downloaded from the metabo-
Lights. The first one is an endometrial cancer study using
the ID MTBLS3444 (https://www.ebi.ac.uk/metabolights/
MTBLS3444/descriptors) [16]. In brief, serum samples
from 396 patients with the endometrial disease and
225 healthy volunteers were analyzed by ultra-high
performance liquid chromatography-quadrupole time-
of-flight mass spectrometry (UPLC-Q-TOF/MS) non-
targeted lipidomics. The second one is a colorectal cancer
study using the ID MTBLS1129 (https://www.ebi.ac.
uk/metabolights/MTBLS1129/descriptors) [17]. In brief,
tissue samples from patient colon tumors (n = 197) and
normal tissues (n = 39) were analyzed by UPLC–MS non-
targeted metabolomics. Both datasets were processed by
deepPseudoMSI and analyzed using the same protocols
described above. In brief, after data augmentation, the
MTBLS3444 has 2082 images and MTBLS1129 has 1414
images (224 × 224), respectively. And for the pseudo-MS
image predictor training and validation, the 5- and 3-fold
cross-validation methods were utilized for MTBLS3444
and MTBLS 1128, respectively.

Key Points

• DeepPseudoMSI converts the LC–MS-based untargeted
metabolomics data to pseudo-MS images and then takes
advantage of the power of deep learning in image pro-
cessing for precision medicine.

• DeepPseudoMSI can predict the GA of pregnant women.
• DeepPseudoMSI can overcome the limitations of the tra-

ditional method for LC–MS data in precision medicine.
• DeepPseudoMSI has the potential ability to significantly

increase the application of MS in clinics for precision
medicine.

Supplementary data
Supplementary data are available online at https://
academic.oup.com/bib.
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