

Multi-Omics Microsampling for The Profiling of Lifestyle-Associated Changes in Health

Xiaotao Shen, Ph.D.

Department of Genetics **Stanford University**

August 29th, 2023@CASMS

shenxt@stanford.edu 🔰 xiaotaoshen1990

() github.com/jaspershen

Outline

- A Background
- Multi-Omics Microsampling Workflow
- Metabolic Phenotyping Response to Ensure Shake Consumption
- 4> 24/7 Personalized Whole Physiome Profiling
- ♦ Summary

Outline

- A Background
- Multi-Omics Microsampling Workflow
- ♦ Metabolic Phenotyping Response to Ensure Shake Consumption
- 4> 24/7 Personalized Whole Physiome Profiling
- ♦ Summary

"Blood is one of the most important biological samples for biomarker study and disease diagnosis."

Traditional Blood Collection: Intravenous Blood Sampling

× Invasive **×** Need clinic help **×** High sample volume needed

Traditional Blood Collection: Intravenous Blood Sampling

Intravenous blood sampling can't be used for highfrequent sampling for personalized health monitoring.

Less painful Easy and flexible Small sample volume needed

Scanford MEDICINE

What Information Can We Get From Microsamples?

Information in Microsamples

Proteins

SWATH proteomics > 500 proteins

Metabolites

Untargeted mass spec > 700 identified metabolites

Lipids

Targeted mass spec > 800 quantified lipids

Targeted assay

Cytokines Hormones Cortisol

Outline

- ♦ Background
- Multi-Omics Microsampling Workflow
- ♦ Metabolic Phenotyping Response to Ensure Shake Consumption
- 4> 24/7 Personalized Whole Physiome Profiling
- ♦ Summary

The Workflow of Microsampling Multi-Omics Platform

Comparison Between Microsample and Intravenous Plasma Sample

Intravenous blood sampling

Comparison Between Microsample and Intravenous Plasma Sample

Can Microsampling Multi-Omics Used For Precision Medicine?

Outline

- ♦ Background
- Multi-Omics Microsampling Workflow
- ♦ Metabolic Phenotyping Response to Ensure Shake Consumption
- 4> 24/7 Personalized Whole Physiome Profiling
- ♦ Summary

Case Study #1 Metabolic Phenotyping Response to Ensure Shake Consumption

Multi-Omics Data Significantly Reflect the Consumption of Ensure Shake

99 out of 560 (17.7%) metabolites

115 out of 155 (74.2%) lipids

7 out of 54 (13.0%) cytokines/hormones

ANOVA

Study Design and Overview

Study Design and Overview

IODIDE, CYANDCOBALAMIN, PHYLLOQUINONE AND VITAMIN D₃

Abbott Nutrition, Abbott Laboratories, Columbus, Ohio 43219-3034 USA

CONTAINS MILK AND SOY INGREDIENTS.

Molecules Have Different Kinetics of Biochemical Responses to Ensure Shake

Stanford MEDICINE

Metabolite Responding to Ensure Shake

Metabolite Responding to Ensure Shake

Metabolic Scores

Metabolic score	Molecules
Carbohydrate score	Fructose, lactic acid, pyruvic acid
Pat score	All TAGs (triacylglycerols)
3 Amino acid score	Alloisolecucine, alanine, isoleucine, methionine, norvaline, phenylalanine, tryptophan, tyrosine, L-Phenylalanine
Insulin secretion score	C-peptide, insulin
5 Free fatty acid score	All FFAs (free fatty acid)
6 Inflammatory response	All cytokines

These differences may be due to several different underlying mechanisms, including levels of enzymes or gut microbiome required to process particular molecules in the Ensure shake.

These differences may be due to several different underlying mechanisms, including levels of enzymes or gut microbiome required to process particular molecules in the Ensure shake.

Stanford MEDICINE

Outline

- ♦ Background
- Multi-Omics Microsampling Workflow
- ♦ Metabolic Phenotyping Response to Ensure Shake Consumption
- 4> 24/7 Personalized Whole Physiome Profiling
- ♦ Summary

Case Study #2 24/7 Personalized Whole Physiome Profiling

HbA1c

Cardiovasouk

Immune system

Hematoloc

Study Design and Overview

Data Summary

Multi-Omics Data Reflects the Food Intake

1,2,3-benzenetriol sulfate

Scaled intensity

Circadian Rhythms of Internal Molecules In Human Blood

Potential Causal Associations Between Wearable and Molecules

Lagged Correlation

Advantage:

- 1. Can catch the nonsynchronous associations between wearable and omics data.
- 2. Can also catch the synchronous associations between wearable and omics data.
- 3. Can get some causal associations between wearable and omics data.

Requirement:

- 1. High resolution sampling.
- 2. Enough time points.

Microsampling makes the lagged correlation algorithm possible.

Example: Step versus Heart Rate

Step is a little bit before the heart rate (step increase the heart rate).

Wearable and Internal Molecular Association Network

Stanford MEDICINE

Glucose Subnetwork

Stanford MEDICINE

Outline

- ♦ Background
- Multi-Omics Microsampling Workflow
- ♦ Metabolic Phenotyping Response to Ensure Shake Consumption
- 4> 24/7 Personalized Whole Physiome Profiling
-

 <h>Summary
 </h>

Summary

- A multi-omics microsampling approach enables the measurement of thousands of metabolites, lipids, cytokines, and proteins in frequently collected 10 µl blood samples.
- A methodology achieves fully remote, scalable, high-temporal-resolution omics and sensor monitoring.
- It has the potential for large-scale comprehensive, dynamic molecular and digital biomarker discovery and monitoring as well as health profiling.
- A new algorithm can be used to discover potential causal relationships.
- Sy integrating high frequent microsampling multi-omics and wearable data, we can achieve personalized health status monitoring in the future.

Acknowledgements

Prof. Michael Snyder (Stanford University)

Dr. Ryan Kellogg (Stanford University)

Dr. Daniel J. Panyard (Stanford University)

Dr. Nasim Bararpour (Stanford University)

Snyder lab Dr. Brittany Lee-McMullen Dr. Alireza Delfarah Dr. Sara Ahadi Dr. Ariel Ganz Dr. Kevin Contrepois Basil Michael **Snyder lab Dr. Daniel Hornburg** Ian Simms Dr. Kevin Castillo Stanford University Dr. Yael Rosenberg-Hasson Dr. Chuchu Wang Dr. Jessalyn Ubellecker

Thank you for your attention! Q&A

Xiaotao Shen, Ph.D.

Department of Genetics Stanford University

🔀 shenxt@stanford.edu 🍯 xiaotaoshen1990

